Testing with Model Checker: Insuring Fault
Visibility

Vadim Okun Paul E. Black Yaacov Yesha
National Institute of University of Maryland
Standards and Technology Baltimore County
Gaithersburg, MD 20899 Baltimore, MD 21250
{vokunl,paul.black }@nist.gov yayesha@cs.umbc.edu

Abstract: - To detect a fault in software, a test case execution must enable
an intermediate error to propagate to the output. We describe two specification-
based mutation testing methods that use a model checker to guarantee prop-
agation of faults to the visible outputs. We evaluate the methods empirically
and show that they are better than the previous “direct reflection” approach.

Key-Words: - formal methods; model checking; SMV; software engineering;
specification-based testing; state machines; test case generation; fault-based
testing; mutation testing

1 Introduction

Specification-based testing is a black-box technique, that is, it assumes that in-
ternal states of the program implementing the specification are unknown, hence
failures can only be detected in external responses. Although model checkers can
be used to generate tests [3, 6, 10, 13, 25, 17], existing methods allow the model
checker to choose tests that do not cause faults to propagate to the program’s
output.

Goradia [16] presents typical cases that prevent a fault in an intermediate
state from propagating to the output.

e The faulty state variable does not participate in a computation that affects
the output. Consider this code fragment where variable output is the only
visible outcome:

if (condition) {
output = state_var;
} else {
output = 10;
}



If, in a specific test scenario, condition is false, an incorrect value of
state_var does not impact the output.

e The faulty state variable has an impact on the result of the operation
that affects the output, but the impact may not be sensitive to the error
represented by the incorrect state. For example, in a predicate such as
state_var > z, the value of state_var affects its result. However, an
incorrect value of state_var may yield the correct Boolean value of the
relational expression.

e Cancelling errors. The faulty state variable may interact with another
faulty state variable or itself and thereby yield a correct state. For ex-
ample, in an expression x * y, if both x and y have incorrect signs, the
result will have correct sign.

e An algorithm may tolerate errors in the values of certain variables. Con-
sider a numeric algorithm which computes the local minimum of a poly-
nomial in a given interval by using an iterative procedure that terminates
when a specific convergence criterion is satisfied. At the end of each iter-
ation, it obtains the next approximation by adding the value of a variable
step to the previous approximation. If the value of step is faulty, the
algorithm may still converge to the correct result by changing the number
of iterations.

In this paper we present two approaches using model checker to guarantee
that tests cause detectable output failures. We briefly introduce model checking,
test generation using model checkers, and mutation adequacy criterion here.

1.1 Model Checking

Model checking is a formal technique based on state exploration. Input to a
model checker has two parts. One part is a state machine defined in terms
of variables, initial values for the variables, environmental assumptions, and a
description of the conditions under which variables may change value. The other
part is temporal logic expressions over states and execution paths. Conceptually,
a model checker visits all reachable states and verifies that the temporal logic
expressions are satisfied over all paths. If an expression is not satisfied, the
model checker attempts to generate a counterexample in the form of a sequence
of states.

A common logic for model checking is the branching-time Computation Tree
Logic (CTL) [8], which extends propositional logic with temporal operators.
Here are two typical CTL formulas together with a short interpretation:

e AG safe
All reachable states are safe.

e AG (request -> AX response)
A request is always followed by a response on the next step.



MODULE main

VAR
d: 0..5; b: 0..11;
f: {0On, 0ff};
out: {Low, High};

a: 0..16; e: 0..1;
ASSIGN
init(e) := 0;
next(e) := case
f=0n:1;
1 :0;
esac;
a :=e *xd + b;
out := case
a > 10 : High;
1 : Low;
esac;

SPEC AG (f = On -> EF out = High)
Figure 1: An SMV Example

We use SMV, a CTL symbolic model checker [20]. In SMV, a specification
consists of one or more modules. One module, named main, is the top level mod-
ule in SMV, serving a role similar to that of the function main in C programs.
Figure 1 is an SMV example derived from [24]. We refer to it throughout the
paper. Variables d, b, and f are inputs and are not constrained. The variables
e and a are intermediate variables. The statement init(e) := 0; sets e to 0
initially. The next value of e is 1 if the guard £ = On is true, otherwise it is 0.
We consider the output to be the variable out, which has possible values Low
and High. Its value is High if a is greater than 10, otherwise it is Low. The
SPEC clause states that if £ is On, it is possible to get to some state where out
is High. We often drop the keyword SPEC when clear from the context.

1.2 Generating Software Tests

Although model checking began as a method for verifying hardware designs,
there is growing evidence that it can be applied to checking specifications of
large software systems, such as TCAS II [7]. In addition to verifying properties
of software, model checking is being applied to test generation and test coverage
evaluation [3, 6, 10, 13, 25, 17].

In both uses, one first chooses a test criterion [14], that is, decides on a phi-
losophy about what properties of a specification must be exercised to constitute
a thorough test. Some specification-based test criteria are conjunctive comple-
mentary closure partitions [6], branch coverage [13], and mutation adequacy [2].



One applies the chosen test criterion to the specification to derive test re-
quirements, i.e., a set of individual properties to be tested. To use a model
checker, these requirements must be represented as temporal logic formulas [2].
To generate tests, the test criterion is applied to yield negative requirements,
that is, requirements that are considered satisfied if the corresponding tempo-
ral logic formulas are inconsistent with the state machine. For instance, if the
criterion is state coverage, the negative requirements are that the machine is
never in state 1, never in state 2, never in state 3, etc.

When the model checker finds that a requirement is inconsistent, it produces
a counterexample. Again, in the case of state coverage, the counterexamples
would have stimulus that puts the machine in state 1 (if it is reachable), another
to put the machine in state 2, and so forth.

The set of counterexamples is reduced, or winnowed, by eliminating dupli-
cates and those that are prefixes of other, longer counterexamples.

Since counterexamples contain both stimulus and expected values, they usu-
ally may be automatically converted to a set of complete test cases [31].

A completely different approach to generating counterexamples is modify-
ing the source code of the model checker to find counterexamples with certain
qualities. However, this approach is beyond the scope of the paper.

1.3 Specification Mutation Criterion

Mutation adequacy [9] is a test criterion that naturally yields negative require-
ments. The specification-based mutation analysis scheme in [3] applies mutation
operators to the state machine or the temporal logic expressions yielding a set
of faulty, or mutant, expressions. Some common mutation operators are:

e replacing a variable with another variable of the same type,
e replacing an integer variable a with a +1 and a — 1,
e replacing a conjunction with a disjunction.

Any particular mutation of a logic expression might be consistent or incon-
sistent with the state machine [2]. A consistent mutant is a temporal logic
formula that is true over all possible executions defined by the state machine.
Since consistent mutants do not yield counterexamples, they are not useful and
may be discarded. A mutation adequate test set should distinguish between the
correct behavior and the behavior of inconsistent mutants.

The rest of the paper is organized as follows. Section 2 reviews similar work
in program-based testing and protocol testing. It also describes the existing
specification-based mutation method and its limitations. Section 3 presents our
two approaches: in-line expansion and state machine duplication (SM duplica-
tion). Section 4 uses the example in Figure 1 to compare approaches. In the
second part of the section, we evaluate the effectiveness of the approaches at
detecting seeded faults in a C program implementing a portion of TCAS. Our
conclusions are in Section 5.



2 Existing Approaches

First, some terminology. A fault is a defect in the code, informally, a bug. A
(visible) failure is an unacceptable result of execution on some test data; in
other words, it is observable incorrect behavior. A failure is caused by one or
more faults. A potential failure, or potential error, is an intermediate incorrect
result.

2.1 Related Work

There is an extensive body of research in program-based testing that studied
conditions for detecting a fault from external responses [21, 26, 32, 29, 22, 15].
The RELAY model [26] defines the revealing conditions under which a fault
is detected. First, a potential error originates at the smallest subexpression
containing the fault, that is, the subexpression evaluates incorrectly. Then the
potential error propagates through computations and information flow until a
failure is revealed in the outputs. Test data can be selected to satisfy revealing
conditions.

Program mutation testing in its original formulation—often referred to as
strong mutation—requires the output of a mutant program to differ from the
original. Weak mutation [18], on the other hand, only requires that the execution
of a component of the mutant and the original produce different values. As we
are concerned with visible failures in this paper, we require strong mutation.

Fabbri et. al. [11] devised a mutation model for finite state machines and
used the mutation analysis criterion to evaluate the adequacy of the tests pro-
duced by standard finite state machine test sequence generation methods. In
another paper Fabbri et. al. [12] categorized mutation operators for different
components of Statecharts specifications and provided strategies to abstract and
incrementally test the components.

The discipline of protocol conformance testing [5] involves testing an imple-
mentation against the protocol specification. Often, the tester has little or no
access to the internal states of a protocol implementation because it is running
on remote machines or only its executable code is available (no source code).
Tests must be selected to cause discernible results in the visible output.

Similarly, one may be interested in testing just a single component of a
modular system. The ccontext of the component represents the rest of the
system. Testing the whole system results in an unnecessarily large test set,
while testing the component in isolation raises the problems of test executability
(e.g., is the test allowed by the context?) and fault propagation (e.g., is a fault
tolerated by the context and thus cannot be detected externally?).

[23] addressed these problems for the case of a system modeled as a collection
of communicating finite state machines, of which one is the specification of the
component to be tested; the rest form the context. Testing in context is reduced
to testing in isolation by way of computing an approximation of the specification
in context. The approximation is a nondeterministic finite state machine model
of the component’s properties that can be controlled and observed through



the context; the behavior of every conforming deterministic implementation is
included in the approximation. The tests derived from the approximation are
executable and guarantee fault propagation. In our work we rely on the model
checker to achieve these goals.

Finite state machine models can only specify behaviors within the domain
of regular languages. [30] proposed a test suite generation method for protocols
specified by extended finite state machines where transitions are associated with
actions such as assignments, conditional expressions, input/output, etc. The
method assumes that the status of an implementation under test cannot be
modified or observed directly, but only by examining the sequences of input and
output events. Such observable events are recorded so that the resulting test
cases can be applied directly to implementations running on real machines. In
this method, an axiom defining the semantics of the actions is associated with
each action type. Assertions (preconditions and postconditions) are updated
according to the axioms. Assertions consist of a sequence of external (input and
output) events appearing along the traversed path, a set of predicates valid at
the current state of the extended finite state machine, and variables that need
to be observed through the output events in order to confirm correctness of a
preselected transition. The method detects any single transition mutants, i.e.,
mutants where one transition leads to an incorrect state.

2.2 Direct Reflection

The test criterion we concentrate on in this paper is specification-based muta-
tion adequacy. It is implemented by mutating temporal logic formulas. These
formulas may be derived from the state machine by a mechanical process called
reflection [2, 1].

Figure 2 contains formulas derived from the assignment statements in Fig-
ure 1. For instance, the next clause for the variable e in Figure 1 is reflected
into the first two formulas. The formulas directly reflect the state machine tran-
sition relation; we refer to this method as Direct Reflection to differentiate it
from the In-line expansion approach which we describe in Section 3.1. These
five formulas may be mutated, and the mutants analyzed by a model checker.

AG (f = 0n -> AX e =1)
AG (! (f = 0n) -> AX e = 0)
AG (a=e *xd + Db)

AG (a > 10 -> out = High)
AG (a <= 10 -> out = Low)

Figure 2: Applying Direct Reflection

A mutant models a fault in the specification. For each mutant, the model
checker finds a counterexample that leads to a potential failure if possible. How-
ever, there is no guarantee that the potential failure will propagate to a visible



output. Consider a mutant of the third formula in Figure 2:
AG (a=e * (d+ 1) +b) (1)

Choosingb = 0,d = 0, and £ = On is sufficient to show an inconsistency in an
intermediate variable a, but not in the output variable out. Such a test is of
little practical value.

3 Two New Approaches

In this section we present two new approaches which use a model checker to
produce counterexamples that cause faults to be visible.

3.1 In-line Expansion

In this approach, only reflections of the transition relation for output variables
are generated and considered for mutation. In these reflected temporal logic
formulas, any intermediate variables are replaced with in-line copies of their
transition relations. This substitution is performed repeatedly until the formulas
are comprised exclusively of input variables. Figure 3 contains formulas derived
from the statements in Figure 1 using in-line expansion method. Compare these
with Figure 2. Since only inputs and externally visible variables appear, the
model checker finds counterexamples that affect the external variables. As in
direct reflection, all mutants can be checked against the original state machine
in a single run.

AG (f=0n -> AX (d+b > 10 -> out=High))
AG (f!=0n -> AX (b > 10 -> out=High))
AG (f=On -> AX (d+b <= 10 -> out=Low))
AG (£f!'=0n -> AX (b <= 10 -> out=Low))

Figure 3: Applying In-line Expansion

If there are conditional expressions in the transition relations for intermedi-
ate variables, this approach leads to an exponential increase in the number or
size of logical formulas: different paths must be specified explicitly. The exam-
ple in Figure 1 has two conditional statements, each with two branches, for a
total of four possible paths, so there are four formulas in Figure 3.

3.2 State Machine (SM) Duplication

The rest of Section 3 deals with the other approach: duplicating the state ma-
chine. Suppose the model checker compares the external behavior of the original
and mutated state machines. Any counterexamples produced must exhibit fail-
ures, that is, inputs must be chosen to manifest differences in the outputs. To



facilitate this comparison, we begin by duplicating the state machine and insure
that the duplicate always takes the same transition as the original. Then we
can mutate the duplicate to implement the mutation test criterion.

More formally, let SM be the description of the original state machine. Let
SMy be a duplicate of SM containing a mutation, or syntactic change. SM
and SM, have separate sets of output variables. We combine the two machines
into a single state machine SM*. We then assert that the values of the outputs
of SM and SMy are identical over SM™. If SM; has an observable fault, the
model checker will produce a counterexample leading to the state where SM
and SMy differ in a value for the output.

From the counterexample, we can construct a test case containing values for
inputs and the expected values for the outputs from the original state machine,
SM.

If the specification allows nondeterministic behavior, the expected outputs
might not be adequate as an oracle. Nevertheless, the tests are expected to
cause some faulty implementation to exhibit failures.

3.3 Handling Nondeterminism

If there are any nondeterministic transitions in the original state machine, SM
and SMy embedded in SM ™ are allowed to make different choices. For example,
the statement in Figure 4 means that the next value for var may be either 1 or
2 if condition is true.

next(var) := case
condition : {1, 2};
1: 0;

esac;

Figure 4: Nondeterminism in SMV

Nondeterminism is expressed in the state machine description language of
SMV by giving a set of values for the result of an expression. When a variable
is assigned a set of values, all possible values are explored independently of each
other. If SM is duplicated naively, SMV could provide a counterexample that
chooses one value of a variable in SM and another value of the corresponding
variable in SMy, that is, the “difference” arises from accidental differences or
differences in execution, not from semantic differences. We must force SM
and SM, to make the same choices when they have a nondeterministic choice.
We achieve this by declaring a new variable globally for each nondeterministic
choice. We modify both SM and SMy to choose depending on this common
global variable.

For the assignment statement in Figure 4, we declare a common uncon-
strained variable: coin : {1, 2};. We then modify both SM and SM, to
have this statement:



MODULE original(d, b, f)
VAR
out: {Low, High};
a: 0..16; e: 0..1;
ASSIGN
. same transitions as in Figure 1 ...

MODULE duplicate(d, b, f)
. same as original, to be mutated ...

MODULE main
VAR
d: 0..5; b: 0..11;
f: {0On, Off};
good : original(d, b, f);
mutant : duplicate(d, b, f);

SPEC AG (good.out = mutant.out)

Figure 5: A Duplication Example

next(var) := case
condition : coin;
1:0;

esac;

While this method is general, it is excessive for variables without explicit
transition, such as inputs: there are still no guards or clauses to mutate. In this
case, we can simply move declarations of such variables into the main module
and pass them to SM and SM, as parameters. Figure 5 is an example of sharing
input variables.

3.4 An Illustrative Example

Consider the sample model in Figure 1. As Figure 5 illustrates, we rename main
to originall, move declarations of input variables into the new main module,
instantiate the original and duplicate modules (SM and SMy, respectively)
in the new main, and pass inputs as parameters. If we wish to avoid passing
each parameter separately, we can use a feature of SMV that allows to pass an
instance of a module (main in this case) as a parameter.

The CTL formula asserts that outputs of the original and mutant modules
are always the same. If there are several output variables, the assertions can be
given in different ways, such as in Figure 6. If there is one SPEC clause for each

L1f the original state machine description has more than one module, all of them must be
renamed for duplication.



output, as in Figure 6(b), more counterexamples are likely. The conjunction in
Figure 6(a) makes the model checker find one counterexample for each mutant.
That counterexample needs only have one output differ between the original
and the mutant. In contrast, with one clause per output, the model checker
tries to find a counterexample for each output for each mutant. Since a mutant
rarely affects all outputs, counterexamples would not be found for all mutants
and outputs. We have not investigated the number of unique counterexamples
produced or any differences in coverage from the two styles.

SPEC AG (good.outl = mutant.outl & good.out2 = mutant.out2 & ...)
(a) A Combined Clause

SPEC AG (good.outl = mutant.outl)
SPEC AG (good.out2

mutant.out?2)

(b) One Clause per Qutput
Figure 6: Specifying Multiple Outputs

Assignment statements in the duplicate module from Figure 5 are candi-
dates for mutation. Some mutations may result in a semantically invalid SMV
model. Two cases are common. First, a mutation operator replacing one vari-
able with another may generate a mutant containing a circular dependency. Our
tools use SMV’s built-in analysis to automatically remove such mutants from
further consideration. Second, the value of an expression on the right hand side
of an assignment in the mutant may be outside of the range of the variable
on the left hand side. Consider a mutant of an assignment for variable a in
Figure 1.

a:=e * (d + 1) + b; (2)

The right hand side of the mutant may evaluate to a value that is greater than
the maximum allowed value of a, which was declared to be 16. To fix this, we
change the declaration of a in the mutant to expand its range when needed.

3.5 Duplicating processes

The example only shows synchronous composition of modules. In case of inter-
leaving, introduced by the keyword process in SMV, special care must be taken
to ensure that the processes of original and duplicate machines follow each other
in an orderly fashion.

We can assign the original and mutant processes unique id numbers, for
instance, 0 and 1. We pass Boolean variables, turn and valid, to the processes.
Turn is initially 0. Each process changes it so that on the next step it is equal
to the id of the other process. Variable valid becomes false if the processes are
ever executed out of order, thus telling SMV to disregard other orderings.

10



Method Mutants UIMs UTs
Direct 91 21 9
SM Dupl. 28 21 7
In-line 128 17 10

Table 1: Number of Mutants and Tests.

The following CTL formula asserts that outputs of the original and mutant
modules are the same after the second process executes, if the processes executed
in order.

AG (turn = 0 & valid -> good.out = mutant.out)

3.6 Sharing Independent Variables

Some parts of the model may not depend on the variable affected by a particular
mutation. These parts do not need to be duplicated. Strictly speaking, for any
particular mutation, we need only duplicate the variable whose assignment is
being mutated and any dependent variables. Dependency determinations can
stop at output variables. Such dependency can be determined using program
slicing [28]. If the model has many modules, only the module with the mutation
and any dependent modules need to be duplicated. For large models with
limited feedback, this may save enough model checking time to be worth the
dependency analysis.

4 Comparison of Approaches

We performed experiments to compare the three approaches. First, we apply
direct reflection, in-line expansion and SM duplication to the small example in
Figure 1 and compare them by measuring the tests generated for each approach
against the other methods. Second, we compare their effectiveness for detecting
seeded faults in an implementation of a small portion of TCAS.

4.1 Specification-based Coverage

In Table 1, “Mutants” is the total number of mutants, including consistent and
duplicate mutants. “UIMs” is the number of valid, behaviorally unique, in-
consistent mutants. In other words, this excludes all consistent mutants and all
but one copy of inconsistent mutants which are semantic duplicates of other mu-
tants. “UTs” is the number of unique counterexamples or tests after duplicates
and prefixes of longer counterexamples are removed.

A method can serve both for generation of tests and as a metric for evaluation
of existing tests. Specification-based mutation coverage metric was introduced
in [2]. We evaluate a method M using a coverage metric C' as follows. We
generate mutants using method C, but only count unique, inconsistent mutants.

11



Coverage Metric
Method Direct SM Dupl. In-line

Direct 100% 90% 76%
SM Dupl. || 100% 100% 88%
In-line 100% 100% 100%

Table 2: Cross-Scoring of Methods.

Let N be the number of these mutants. We turn the unique counterexamples
generated by M into constrained finite state machines (CFSMs) representing
individual execution sequences of the state machine [1], then use SMV to find
which mutants from C are inconsistent with (killed by) at least one CFSM.
Let k be the number of mutants killed. The coverage is k/N. A method gets
100% coverage when evaluated against itself as a metric. Table 2 presents cross-
coverage of the three methods.

The SM duplication and in-line expansion methods perform better than
direct reflection: each of them kills 100% of direct reflection mutants, while
direct reflection kills only 90% of SM duplication mutants and 76% of in-line
expansion mutants. The following example helps explain why.

SM duplication method produces this counterexample to detect the mutant
statement (2), Section 3.4:

d=0; b=20; f=0ff;
f = On;
b 10; £ = 0ff;

For counterexamples, we present only values for the input variables. Each ex-
ecution step appears on a separate line. Variables not reported are unchanged
from the previous step. At the last step in the original state machine a is
1%x04 10 = 10 and out is Low, while in the mutant machine ais 1«1+ 10 =11
and out is High.

In the in-line expansion method, there are two corresponding mutants:

AG (£=0On -> AX (d+1+b > 10 -> out=High))
AG (f=0n -> AX (d+1+b <= 10 -> out=Low))

The second mutant is consistent with the state machine. The first mutant
produces a counterexample that is exactly the same as the counterexample
produced by the SM duplication method. Both methods force SMV to choose
a value of b that causes a visible difference in the output.

In contrast, we saw in Section 2.2 that the direct reflection method produced
the following test to detect the corresponding mutant, formula (1):

d=0; b=20; f=0ff;

f = On;
f = 0ff;

12



The value of the intermediate variable, a, is 0, while the mutant expects it to
be 1 in the final step, thus the test shows that the mutant is inconsistent with
the state machine. However, when a is either 0 or 1, out is Low. Hence the test
will detect a mutant in the implementation only if intermediate variables are
visible.

The in-line expansion method has 100% coverage against any of the three
metrics. The method can be thought of as a version of path coverage, a very
powerful criterion. Consider a mutant of the statement for variable out where
“a > 10 : High” is replaced with “a < 10 : High”. SM duplication method
will produce the following single-step test to detect the mutant:

d =0; b=20; £f=0ff;
In the in-line expansion method, there are two corresponding mutants:

AG (£f=0n -> AX (d+b < 10 -> out=High))
AG (£!=0n -> AX (b < 10 -> out=High))

While the second mutant can be detected by the same single-step test, the first
mutant requires setting £ = On. The method requires to test different paths.

It is theoretically possible to combine SM duplication with in-line expansion.
The combined method will eliminate the intermediate variables and present
the transition relation of the state machine in terms of input and output vari-
ables. However, this will have the disadvantage of the in-line expansion method,
namely, the formulas can grow exponentially.

4.2 Effectiveness in Detecting Faults

Our goal is to reduce the number of faults in programs. Therefore, we evalu-
ate the effectiveness of the methods for detecting seeded faults in a small but
realistic program. The subject program is TCAS — aircraft collision avoidance.
It is a part of a set of programs that comes originally from Siemens Corporate
Research [19] and was subsequently modified by Rothermel and Harrold [27].
These programs are used in research on program testing, so they come with
extensive test suites and sets of faulty versions.

The program consists of 9 procedures, 135 non-blank non-comment lines
of C code. There are 12 input variables specifying parameters of own aircraft
and another aircraft and one output variable—alt_sep—a resolution advisory
to maintain safe altitude separation between the two aircrafts. The program
computes intermediate values and prints alt_sep to the standard output. We
wrote a formal specification for the program in SMV.

The program comes with 39 faulty versions derived by manually seeding
realistic faults. 26 versions have single mutations such as replacing a constant
with another constant, replacing > with >, or dropping a condition. The rest
involve either multiple changes or more complex changes.

We ran experiments on TCAS to compare the methods in terms of the num-
ber of test cases produced and the effectiveness in detecting seeded faults. In

13



Method Mutants UTs | Coverage
Direct 948 83 59%
SM Dupl. 464 52 100%
In-line 3062 139 100%

Table 3: Effectiveness in Detecting Seeded Faults

Table 3, “Mutants” is the total number of syntactically valid mutants, including
consistent and duplicate mutants, “UTs” is the number of unique counterexam-
ples or tests after duplicates and prefixes of longer counterexamples are removed.
“Coverage” is the number of faulty versions detected by the method divided by
the total number of faulty versions.

We used NIST’s Test Assistant for Objects (TAO) [4] to turn the coun-
terexamples into concrete test cases. When provided with the correspondence
between specification variables and function calls on the implementation level,
TAO generates code to create new test instances, call the interface functions
to set and get values, make sure the specified conditions hold, and report any
differences between produced and expected results.

Table 3 shows that SM duplication and in-line expansion approaches detect
100% of faulty versions while direct reflection detects only 59% of the faults.
We attribute the magnitude of the difference to a relatively large intermediate
state of the program.

The in-line expansion method produced by far the largest number of mutants
and test cases of the three methods. The SM duplication method generated the
smallest number of mutants and test cases, yet it is as effective as the in-line
expansion method in detecting seeded faults.

The time required to generate tests using the direct reflection method was
3.5 seconds, SM duplication — 9 seconds, in-line expansion — 19 seconds. We
used a 1.7 GHz Pentium 4% PC with 1 GB of RAM running the Linux OS. The
SM duplication method took considerably longer due to the overhead of starting
SMV and building the state machine model for every new mutant.

5 Conclusion

We presented two new methods, in-line expansion and state machine (SM) dupli-
cation, that use a model checker to choose tests which ensure fault propagation
to visible outputs. We compared these methods and the previous direct reflec-
tion method based on “cross-scoring”. In-line expansion and SM duplication
methods got better coverage than direct reflection.

The in-line expansion method is not as useful in practice since it quickly
increases the size and number of logic formulas. The SM duplication method
duplicates the state machine thus increasing the size of the state space. The

2Pentium is a registered trademark of Intel Corporation.
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running example is tiny and the TCAS specification is relatively small, so the
limits of scalability have not been addressed. Dependency analysis by slicing is
one way to improve scalability.

Our experiments suggest that the SM duplication and in-line expansion
methods are much more effective than direct reflection for black-box testing,
that is, where the tester does not have access to the intermediate variables in
the program. To our knowledge SM duplication is the first method that relies
on a model checker in order to automatically generate tests that guarantee fault
propagation to the outputs.
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